A Hybrid Metaheuristic Approach for Minimizing the Total Flow Time in A Flow Shop Sequence Dependent Group Scheduling Problem

نویسندگان

  • Antonio Costa
  • Fulvio Antonio Cappadonna
  • Sergio Fichera
چکیده

Production processes in Cellular Manufacturing Systems (CMS) often involve groups of parts sharing the same technological requirements in terms of tooling and setup. The issue of scheduling such parts through a flow-shop production layout is known as the Flow-Shop Group Scheduling (FSGS) problem or, whether setup times are sequence-dependent, the Flow-Shop Sequence-Dependent Group Scheduling (FSDGS) problem. This paper addresses the FSDGS issue, proposing a hybrid metaheuristic procedure integrating features from Genetic Algorithms (GAs) and Biased Random Sampling (BRS) search techniques with the aim of minimizing the total flow time, i.e., the sum of completion times of all jobs. A well-known benchmark of test cases, entailing problems with two, three, and six machines, is employed for both tuning the relevant parameters of the developed procedure and assessing its performances against two metaheuristic algorithms recently presented by literature. The obtained results and a properly arranged ANOVA analysis highlight the superiority of the proposed approach in tackling the scheduling problem under investigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison of algorithms for minimizing the sum of earliness and tardiness in hybrid flow-shop scheduling problem with unrelated parallel machines and sequence-dependent setup times

In this paper, the flow-shop scheduling problem with unrelated parallel machines at each stage as well as sequence-dependent setup times under minimization of the sum of earliness and tardiness are studied. The processing times, setup times and due-dates are known in advance. To solve the problem, we introduce a hybrid memetic algorithm as well as a particle swarm optimization algorithm combine...

متن کامل

Solving Group Scheduling Problem in No-wait Flow Shop with Sequence Dependent Setup Times

Different manufacturing enterprises use regularly scheduling algorithms in order to help meeting demands over time and reducing operational costs. Nowadays, for a better useofresources and manufacturingin accordance withcustomer needs and given the level ofcompetitionbetweencompanies, employing asuitablescheduling programhasa double importance. Conventional productionmethods are constantly subs...

متن کامل

Solving Group Scheduling Problem in No-wait Flow Shop with Sequence Dependent Setup Times

Different manufacturing enterprises use regularly scheduling algorithms in order to help meeting demands over time and reducing operational costs. Nowadays, for a better useofresources and manufacturingin accordance withcustomer needs and given the level ofcompetitionbetweencompanies, employing asuitablescheduling programhasa double importance. Conventional productionmethods are constantly subs...

متن کامل

A novel hybrid genetic algorithm to solve the make-to-order sequence-dependent flow-shop scheduling problem

Flow-shop scheduling problem (FSP) deals with the scheduling of a set of n jobs that visit a set of m machines in the same order. As the FSP is NP-hard, there is no efficient algorithm to reach the optimal solution of the problem. To minimize the holding, delay and setup costs of large permutation flow-shop scheduling problems with sequence-dependent setup times on each machine, this pap...

متن کامل

Scheduling of a flexible flow shop with multiprocessor task by a hybrid approach based on genetic and imperialist competitive algorithms

This paper presents a new mathematical model for a hybrid flow shop scheduling problem with multiprocessor tasks in which sequence dependent set up times and preemption are considered. The objective is to minimize the weighted sum of makespan and maximum tardiness. Three meta-heuristic methods based on genetic algorithm (GA), imperialist competitive algorithm (ICA) and a hybrid approach of GA a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Algorithms

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014